
ISRAEL JOURNAL OF MATHEMATICS, Vol. 24, No. 1, 1976 

THE PROBLEM OF ENVELOPES 
FOR BANACH SPACES 

BY 

J A C Q U E S  STERN 

ABSTRACT 

Let X be a Banach space. A Banach space Y is an envelope of X if (1) Y is 
finitely representable in X;  (2) any Banach space Z finitely representable in X 
and of density character not exceeding that of Y is isometric to a subspace of Y. 
Lindenstrauss and Pelczynski have asked whether  any separable Banach space 
has a separable envelope. We give a negative answer to this question by showing 
the existence of a Banach space isomorphic to 12, which has no separable 
envelope. A weaker positive result holds: any separable Banach space has an 
envelope of density character _-< N~ (assuming the cont inuum hypothesis). 

The aim of this paper  is to prove the following result (relevant definitions 

appear  below): 

THEOREM 1. For any e > 0, there exists a Banach space 1 + e-isomorphic to 12 
and which has no separable envelope. 

This theorem gives a negative answer to a question of Lindenstrauss and 

Pelczynski ([3, problem 8]). There is still a result in the positive direction: 

THEOREM 2. Assume the continuum hypothesis; then any Banach space of 

density character at most ~I1 has an envelope of density character at most Nz. 

We first recall some definitions. 

DEFINITION 1. Let E, F be Banach spaces. F is finitely representable in E if 

for any finite dimensional subspace A of F and any e > 0, there is a subspace B 

of E which is 1 + e-isomorphic to A. 

DEFINITION 2. Let E be a Banach space; the density character of E is the 

smallest cardinal K such that there exists a dense subset of E of cardinality K. 
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DEFINITION 3. Let E, F be Banach spaces; F is an envelope of E if: 

i) F is finitely representable in E, 

ii) any Banach space finitely representable in E and whose density character 

does not exceed that of F is isometric to a subspace of F. 

In [3], Lindenstrauss and Pelczynski have shown that Lp (0, 1) is an envelope of 

lp and have asked whether a separable Banach space has a separable envelope. 

The notion of ultrapower [2] provides a nice approach to study finite 

representability: the following result was already observed in [4] (see also [5]), 

and will be used throughout the paper: 

PROPOSITION 1. F is finitely representable in E if and only if F is isometric to a 

subspace of some ultrapower of E. 

1. A separable Banach space with no separable envelope 

Before we start building the counter example we state two more results that 

can be proved by the same method. These results may give an indication on the 

ideas that have led us. 

THEOREM 3. For any e > 0, there exists a Banach space E, 1 + e-isomorphic to 

12, such that if ~ is an ultra]ilter on a set O, i and - i are the only isometric 

embedding from E into E~ (where i denotes the canonical embedding). 

To state the other result, we need one more definition. 

DEFINITION 4. Let (x,).~,, be a sequence of elements of a given Banach 

space E. 
i) (x,),~N is norm-indiscernible if for any finite set of real numbers A1," ", Ak 

and for any increasing sequence of integers na < �9 �9 �9 < nk the following equality 

holds: t tAIx~+""  + A~xk II= IIA1x-,+"" + Xkx,~ II- 
ii) (x,)~N is norm-indiscernible and symmetric if the above equality holds for 

any finite set of integers (not necessarily increasing). 

D. Dacunha Castelle and J. L. Krivine have shown that in any Lp-space 

(1 -< p < ~) any norm-indiscernible sequence is symmetric. 

THEOREM 4. For any e > 0 there exists a Banach space E, 1 + e-isomorphic to 

12, and a sequence (x, ) n ~  in E which is norm-indiscernible but not symmetric. 

We first give the proof of Theorem 1. We start with the Hilbert space 12. lz is 

endowed with the usual inner product 
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(x, y ) =  ~ x.y..  
n = o  

The euclidean norm is defined by 

Ix I = ~/(x, x).  

The unit ball of 12 will be denoted by B and the unit sphere by S. We will use 

quite freely the terminology coming from elementary geometry. Thus, a line will 

be any one-dimensional subspace of 12; a plane any two-dimensional subspace; 

L(x) will denote the line spanned by a non zero element x, P(u, v) the plane 

spanned by two independent elements u, v. The angle a of two elements x, y is 

defined by cos c~ = (x, Y)/I x I I Y 1, 0 = a -<_ rr. If e is an element of norm 1 and if Y 

is a real number, 0 < ",/< 1, the facet F(e, 3') is the set of elements y in B such 

that (e, y) = 1 - "y. Finally if x and x '  are two elements of a given space, we 

denote by [x, x:] the set { y : y = A x + ( 1 - A ) x ' , 0 = < A  <1}.  

We pick a sequence & , , & , . . . , 6 , , . - .  of positive real numbers such that 

~. > 6.+~ n E N  
l i m ~  6. = 6 > 0  

6o is small enough; a precise version of this statement is (1 - 6o)-' _-< 1 + e and 

((X/2/2) + 4~ /60 ) (1 -  60)2 =<cos ( 4 -  1--~00). 

We let e0, e , , ' "  . , e . , . . .  denote the unit vector basis of l:. 

We let (q , ) ,~  be an enumeration (without repetition) of the set of rational 

numbers. We let H be the set of pairs (i,j) such that i < j  and q~ <qi. 

We let 
e~ +ej  

d i j  - -  e i  - -  e j  

We let K be the set of elements x of 12 such that 

1) x ~ B  
2) - l+6,<=(x ,e , )<=l-~,  n @ N  
3 ) - l + a < = ( x , c , , ) < = l - a  (i,j)EH 
4 ) - l + , ~ _ - < ( x ,  d q ) - < l - , 5  (i,j)~_H. 

Clearly (1 - 60)B _C K C_ B ; also K is an intersection of convex sets, therefore K 

is convex; finally - K = K i.e. K is symmetric. Therefore  K is the unit ball of a 

new norm defined by 

II x II -- (sup { ,~ : ,~x ~ K })-'. 
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The  new norm is equivalent  to the o ther  one;  more  precisely we have  

Ix f-<llxll--<O-ao) 'Ix f. 

We claim the space E equal  to 12 endowed  with the new norm [Ix [[ has no 

separab le  enve lope  and is 1 + e - i somorph ic  to 12. 

We first make  some remarks .  

1. The  unit sphere  s of E is the union of the facets F(e,, &), F( - e, &), i ~ N, 
of the facets F(c~j,,5), F ( - c ~ j , a ) ,  F(&j,~), F(-d~i ,a) ,  ( i , j ) E H  and of the 

e lements  x of S such that  the line L(x )  does not mee t  any of those facets. 

2. If P is a p lane  and F is a facet F = F(e, ~/), then ei ther  P N F is emp ty  or 

there  exist two e lements  of S, x and x '  such that  P A F is the set of e l ements  

[x, x ']; it is easy to see that  in this case [ x - x ' l  -<- 2X/~-~ - 3, 2 (this is the eucl idean 

d i ame te r  of  F).  

LEMMA 1. A plane P meets at most 8 of the facets of s 

Let F and F '  be  two distinct facets  of E, F = F(u, 7), F' = F(u' ,  y'). Assume  

x ~ F ,  y C F ' .  We  have  ( x , y ) - ( u , u ' ) = ( ( x , y ) - ( x , u ' ) ) + ( ( x , u ' ) - ( u , u ' ) )  so 

that  ( x , y ) -  (u, u ' ) + [ y  - u ' [ + l x  - u I but  it is easy to see that  

[ y - u ' J = < X / ~ < 2 X / & ,  similarly I x - u [ < 2 X / 8 0  

so that  (x, y)  < (u, u ' ) +  4~/ff0. 

But  (u, u ' )  is at most  X/2/2  so that  

(x, y)  < ~ - -  + 2~/~o. 

If we let ( x , y ) / [ x [ . l y l  = cos a,  0_- < a _-< 7r, then a is not much  smal ler  than 

r r /4 ;  more  precisely 

,/'r 77" 

a >-- 4 100" 

Now assume P is a p lane  which contains  nine e lements  belonging to nine 

distinct facets of X; two of these e lements  are such that  their  angle is at mos t  

2~r/9;  we get ( r r /4 )  - (~r / 100) _-< 21r/9;  contradict ion.  

In order  to descr ibe the intersect ion of X with a plane,  we in t roduce  some  

notat ion:  assume u, v are e lements  of P such that  [ u l  = I v l  = 1, ( u , v ) = 0 ;  

assume ao, a ; ,  am, a I, �9 �9 ", aT, a ;  are real number s  such that  

i) ao= 0 
ii) ak-<a;, k = O , ' " , 7  
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iii) ( ~ - / 8 ) +  a~,=< o~k+, k = 0 , . . . , 7  

iv) 0_-<o~k < 2 I r  k = 0 , - . - , 7  

v) 0 =< a~,<  27r k = 0 , " ' , 7  

(by a~ we mean  27r). 

Let  xk = (cos ak )u  + (sin ~k )v ; S.(u, v ; ao, a ~ , . . . ,  ocT, a ~) will deno te  the union of 

the following sets: 

X~ -- [xk, x ~,] k = 0 , . . . ,  7 

Yk - - { y : y  = (cos/3)u + (sin/3)v,c~,--</3 =< c~k§ k = 0 , . . . , 7 .  

(Recall  that  [xk, x ~,] = { x : x = Axk + (1 -- A )x ;,, 0 =< A =< 1 }.) 

Clearly,  if P is a plane,  X f-) P is of the form X(u, v;  a0, ~ , . . . ,  c~:, a~) for  some  

e lements  u, v and some  real number s  a0, a~; , . . . ,  ~7, a~, satisfying condi t ions i) 

to v). 

We now turn to u l t rapowers  of E. Let  ~ be an ultrafil ter on a set O. We  recall 

that  the u l t r apower  E~176 is the quot ient  space Ho/N where  Fl0 = 

{(xo)0~o: Xo E E and for  some  A, t[ xo [[ _-< A } and N = {(xo)o~o: l im .  H xo [[ = 0}. 

The  no rm on E ~  is c o m p u t e d  via the formula  

II (xo)o   II = lira 1[ xo N. 

There fo re  E~176 is l~176 endowed  with a new norm equiva len t  ot the eucl idean 

norm and satisfying more  precisely for x = (xo)o~o 

Ix I--<llx II--<(1- x I. 

This shows that  it makes  sense to speak  of o r thogona l  vectors ,  length, angle �9 �9 �9 

in E ~  / ~ 

If (Co)o~o are subsets  of E then IIo~oCo/~ is the set of e l ements  x which can 

be wri t ten (xo)o~o with xo E Co. 

LEMMA 2. Let  P be a plane in l ~  ; the intersection of P with the unit sphere of 

E~ is of the form Y(u, v; ao, a ~ , - . . ,  a : ,  a~). 

Obse rve  first that  P is the u l t raproduc t  of IIo~oPolr for a family of planes Po, 

P0 C 12. If x is an e l emen t  of P such that  ]Ix II = 1 then we may replace xo by 

xo/llxo Jl or  by a fixed e l emen t  of norm 1 if xo = 0 so that  if Xp is the unit sphere  

of P, then X~, = IIo~oX N Po / ~ Po fq "2 is X( uo, vo ; aoo, c~ ~ , . . . ,  ctoT, ct 'o7). For  any 

e lement  x = (xo)o~o such that  

Xo = AoUo + t-toVo, 
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we have  

where  u = (u.)o~,  v = (v.)o~.  

It follows easily that  

~ = ~ ; ( u ,  v ;  ~ , ! ,  ~ ; , ' "  ", ~ ,  ~ )  

where  

F u r t h e r m o r e  if 

and 

as above ,  then 

and 

k = l i m  a o k ,  a ;, = l i m  a ~ k .  o// ~/ 

xo~ = (cos ao~)uo + (sin ao~ )vo 

' - (cos a ;k)uo + (sin a ~)vo X ok - -  

xk = (xok)o~#~ = (cos ak)u  + (sin ak)v 

x ;, = (x ;k)o~o = (cos a ;,)u + (sin a ;,)v 

( * )  
r x~ - x;,I = l im I xo~ - x~,~l �9 

Before  we state  the next l emma,  we recall that  there  is a canonical  embeddin~ 

f rom E into E ~ / ~  (which maps  x on to  the e l emen t  i(x) of E ~ / ~  given by th~ 

cons tant  funct ion equal  to x).  We  still wri te e0, e , , - . . , e ~ , . . ,  instead o 

i (eo) , i (e l ) , . . ' , i (e , ) .  We let ~, = e n ( 1 - 8 , ) ;  similarly, we let, for ( i , j )EI-I  

~,~ = c,j(1 - 8), d,~ -- dlj(1 - 8). 

W e  also recall that  if x is an e l emen t  of the facet  F(e~,8n) of E, thel 

I x - ~ ] _-< X/2-~ - 8~; we let y.  = \ / 2 8 .  - 8~; y.  is a strictly decreas ing sequ 

ence;  finally, we obse rve  that  for  any n, there  exists x~, x'. in F(e~, 8~) such tha 

[x.,x'~]C F(e. ,8.) ,  I x ~ - x ' . l = 2 y ~ ,  and (x~ + x'~)/2= 3~. 

LEMMA 3. Let x and x' be two elements of I~ / ~ such that [x, x ' ]  is included il 
the unit sphere of E ~  and I x -  x'l>= 2 y . ;  then, there exists an integer rn 

0<= m <= n, such that 
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sup ( Ix  -~ , .  I,I 

or 

sup ( Ix  + ~" I,I 

Let P be the plane spanned by x and 

of the preceding lemma, the hypotheses mean that 

[x, x'l c_ :~p; [x-x'l>=23".. 

The inclusion [ x , x ' ] C  ~ .  shows that for some integer 

0 ~ k =< 7. Now equality (*)  tells us that 

23,. =< Ixk - x ~ l  = limlx0k -x~,k I 

x ' -  ~m I)_-< 3',,; 

x' + ~,. I)._-< ~,,,. 

x';  if we keep the notations of the proof 

k, Ix, x'] C [xk, x 'k], 

f x~ - g,. I_-< 3,,, 

[ x ; , -  ~m f_-< 3'.,. 

But for some 3., 0 < h .  < 1, x = ~.xk + ( 1 - ~ ) x : , ;  therefore 

Ix - ~,. I = I ,~ (x~ - ~, ,)+ (1 - ,~)(x ~ -  0m)l--< 3',,, 

similarly I x ' -  Y,, I = 3'-,. 

We now study isometric embeddings from E into E~ this means that we 

try to forget the euclidean structure; the next lemma shows that we are actually 

able to recapture it. 

LEMMA 4. Let 4~ be an isometry from E into E ~  / all, then, ~b is an isometry from 
12 into l~ / ~ 

In the ul t rapower this gives 

so that X = { O : l x , k  - xokl >23,.+~}E ~ 

Now if 0 r X, [x,k, x ;k] can only be included in one of the facets F(--+ e,., 6,,), 

0 = m =< n (otherwise, we would have IXok - x ; k l  < 23',§ It follows that there 

exists an integer m, 0 _-< m _-< n, such that 

{ O: [xek, x'ek] C F(e,,, 6,.)} @ o//, 

or  

{0: [xo~, x'~k] C_ F ( -  e,., 6,.)} E 0//. 

We only deal with the first case; we get: 

{0 : l x ;~ -~ . ,  f_-< 3'., }~  ~ 
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PROOF. Let P be a plane in l~/~ The unit sphere of P (for the norm of 

E~176 is ]~p =E(u ,v ;ao ,  a~ , ' " ,aT ,  Ct~). Clearly, from the fact that ak+l----- 

ak+(Tr/8) ,  it follows that ~e has infinitely many elements x such that 

I x I = lim~ I xo ] = 1. We claim that the restriction to P of the norm of l~176 is the 

unique inner-product norm on P whose unit sphere has at least 21 elements in 

common with Ee. Indeed, the unit sphere of any other inner product norm is an 

ellipse and therefore can have at most 20 points in common with Ee (at most 4 

with the circle and two with any facet). 

Now if l~b(x) l~ lx  I, then if Q is any plane in E such that x E Q, two distinct 

inner-product norms can be defined on P = ~b(Q): 

S~(y): y - ~ l y  1= Sl (y)  

S f fy ) :  y --*1 tb-~(Y)I = N2(y). 

Let S, and $2 be the unit spheres of N,, N2 respectively. Clearly, S, has infinitely 

many points in common with E~,. ~b-~(S2) has infinitely many points in common 

with the unit sphere of O (for the norm of E), therefore as 'b is an isometry, $2 

has infinitely many points in common with Ee; contradiction. 

LEMMA 5. Let 4) be an isometry from E into E ~  / all ; then for every integer n, 

ck(e.) = • e,. 

PROOF. Assume the lemma is false and let n be the first integer such that 

~b ( e , )~  ---e.. Let x. and x" be such that 

[x.,x'.] C_ F(e., 6 , ) C E  

fx _x . l=2~ , . ;  x.+x" 

The set [~b(x.), tk(x',)] is included in the unit sphere of E. By Lemma 4, 

1 6 ( x , ) -  6 (x ' )  [ = 2y. .  

We now may apply Lemma 3; it follows that for some m, 0_-< m _-< n, 

either 

]~b(x,)-~,,l_<-y,, and ]~b(x')-~,~l_<-y,. 
or  

14,(x.)+~.,l<_-~,., and 14,(x')+~..l<=~.. 

If m < n, then by our choice of n we get 

4, (~)  = •  
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o r  

this gives 

o r  

hence 

o r  
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I 6 ( x ~  6(~,.)1--< rm 

I 6 ( x . ) +  +(~,.)1--< ~'"; 

fx~ f_-<~m, 

]Y. -Y. , ] - - -Tm+T.  i.e. [e.-e,.l<=y.,+y.+&.+6. 

[e.+e,.[<=y.,+7. i.e. [e.+e,.[<=y,.+y.+3,.+6.. 

But 6,. + 6. + ~/,. + y. _-< 6~/6o =< 1 and I e. + e.. I = X/2; contradiction. 

So, for example, 

and also 

] , t , (x~ ~. I <_- ~,~ 

I ,t,(x'o)- ~. I -  -< ./~ 

The following equality is well known and holds in any Hilbert space: 

I 4)(x.) + ~ ( x ' ) - 2 0 .  I: + 14~(x.)- ~(x'.)1:= 2(I , / , (x . ) -  ~. J= + I ,t,(x'o) - ~. I z) 

It implies 

so that 

] 4~(x.)-  ~b(x'.) [ = 2T. 

[ 4 , (x~  ~~ [ ~ ~,. 

I 6 (x 'o ) -  ~. l -  <- ~'~ 

I ~ (x . )  + ~(x'o)-  2~~ I = o 
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which implies, 

6 ( ~ o )  = 6 ( x o  + x'o) = ~ ,  
2 

~b(e~) = e, ; 

in the o the r  case, a similar a rgumen t  yields ~b(e~)= - e , .  

We  are now going to define many  distinct spaces finitely represen tab le  in E ;  

we first s tate an easy i emma.  

LEMMA 6. Let i < j .  Then either ( i , j ) E H  and Ilc,,ll=lld, l l = ( 1 - ~ ) - '  or 

(i,j)ff. H and Hc,, 11 = lid,, 1[ = 1. 

LEMMA 7. For any ~ U R - Q  there exists an ultrafilter ~ e on N, and an 
element at of EN /alle such that 

[[ae• l l : ~ / 2 ( 1 - 8 ) - '  if q , < ~ :  

[[a, ~ ej II: ~/2 if qj>~. 

PROOF. Let  ~ be an ultrafil ter on N such that  

lim q, = ~. 

In the space E"/aUt we let at be the e l emen t  given by (en)n~N. Let  i be a fixed 

integer  and assume q~ < ~ then {j: q~ < qi and i < j } E ~ t  so that  by L e m m a  6, 

[[at +e, II = lime, (lie, +e ,  II),~,, = lim~, (x/2lt c , II),EN = X/2(1 - 8 ) - ' .  

Similarly, II at - e, II = V~(1 - ~)-' .  On the o the r  hand  if j is a fixed integer  and 

qi > s r, then {i: q, < qj and i > j } E q/t so that  by L e m m a  6: II at + ej II = 

lime, (lie, + ej II),E,, -- l ime, (~/2]1 c,j II),~,~ -- V~; similarly II ar - e, 11-- x/2.  

We  are now able to p rove  T h e o r e m  1: 

CLAXM. E is 1 + e-isomorphic to 12 and has no separable envelope. 

PROOF OF CLAIM. We have  for  any x in E 

Ix I---IIx I1=<(1- ~o) 'Ix I, 

so that  E is (1 - &) - '  i somorphic  to 12; if (1 - 8o) t =< 1 + e, E is 1 + e - i somorph i c  

to 12. 

A s s u m e  E has a separab le  enve lope  F. F is a subspace  of an u l t r apower  of E, 

E ~  Let  (~ be  ultrafilters on N, at be  dist inguished e lements  in 

EN/~ respect ively,  as in L e m m a  7. Let  Et  be  the subspace  of EN/~ spanned  
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by ae and the elements of E. Let ~b e be an isometric embedding from E e into F. 

4'e [ E is an isometric embedding from E into E~176 ; therefore, by Lemma 5, 

4~e (e,) = +el .  

Let be be ~be(ae); by Lemma 7 and the above we get 

Ilbe+e, l l = ~ 2 ( 1 - ~ )  -' if q,<,ff .  

II be.• e, 1[ : ~/2 if q , > # .  

If ~ ~:' there exists an integer k such that ~ < qk < so'; we get 

II be + ek II : ~ 2  

II be, + v ~  li : x /~ (1  - a )  -I 

so that 

II be - be, II ~ ' , /~ ( (1  - a )  - I -  1) : p.  

Finally the (b~)es~ o are an uncountable family of elements with mutual 

distance => p > 0. This cannot happen in a separable Banach space. 

We now briefly indicate how to modify the above construction in order to 

prove Theorems 3 and 4. 

PROOF OF THEOREM 3. We let (&),EN and 6 as above; we also keep the 

other notations. 

We let K~ be the set of elements x in 12 such that: 

i) x E B (B is the unit ball of /2) 

ii) - l + 8 . < = ( x , e , ) < - l - 6 , ,  h E N  

iii) - l + 8 <=(x,c,,)<= l -  6, j = i + l; i, j E N. 

K1 is the unit ball of El;  E1 is 1 + e-isomorphic to 12 provided & is small 

enough. If 4~ is an isometry from E1 into E?/aU, then, it is shown as above that 

4~(e . )  = + e..  

N o w  

[[ e, + e,+, [[/~/2 = (1 - 6) -1 

whereas 

I1 e, - e,+, I I /x /~  = 1 
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so that  for any i, ~b(e,)= e, implies 4,(e,+,) = e,+, and q b ( e , ) = - e ,  implies 

4~(ei+l) = - ~(e,+,). It follows that  e i ther  ~(eo) = e0 and 4~ is the canonical  em-  

bedding  i f rom E~ into E~/~ or ~b(eo) = - e o  and 4~ is equal  to - i .  Q.E.D.  

PROOF OF THEOREM 4. We keep  the same  nota t ions  as above.  We  let K2 be 

the set of e lements  x in 12 such that  

i) x E B  
ii) - 1 + 6 -< (x, (2e, + e,)/X/5) =< 1 - & i < j. 

Kz is the unit ball of a Banach  space E2; E2 is 1 + e - i somorph ic  to 12 provided  6 is 

small enough.  

Assume  k , , . . . ,  k , , . .  �9 is an increasing subsequence  of the integers;  let tr be  

the i sometry  f rom 12 into 12 defined by o ' ( e . ) =  ek.. It is easy to see that  o- is an 

i sometry  f rom E2 into E2 so that  (e.).~N is a norm-indiscernib le  sequence.  It is 

not symmet r i c  because  

X/5 = [I e, + 2e2 II ~ II e2 + 2e, II = (1 - 3 ) - ' x / 5 .  

2. Envelopes of density N, 

We now prove  T h e o r e m  2. Actual ly,  this result can be der ived f rom a result  in 

mode l - theory ;  thus what  we have  to do is to descr ibe  a p rope r  set t ing to t ransfer  

this result. We assume the reader  is famil iar  with model  theory  and we refer  to 

[1] for all the definit ions and the results we need.  

We  are in teres ted in the following type of structures:  

91 = (I 9.11, +~,(.q'a)q~o,B* ) 

where  

1911 is a set (the domain  of 91) 

+ *  is a funct ion f rom 191 ]2 to I Pll 

�9 q~ is a function f rom [91 1 to for any q E Q 

B ~' is a subset  of 1 9.1 I. 

The  appropr i a t e  language L to discuss such s t ructures  includes, besides  

var iables  (v,),~N : 

a b inary function symbol  + 

for  each q in Q a unary  function symbol  q 

a unary  predica te  symbol  B. 

T o  any Banach  space E, we can associate  a s t ructure  of the above  type 9.1(E), 

the in te rpre ta t ion  of B being the unit bali of E. Converse ly ,  if ~ is a s t ructure  
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elementarily equivalent to 9~(E) it is possible to associate to �9 a normed-Q- 

space [~] by the following procedure: 

first let 

H ~ = { x : x ~  I~1 and for some q > 0 ,  q~ 'xEB~}.  

I-I~ is closed under + 'e because g) is elementarily equivalent to 9A(E); this shows 

that for any two elements x,y in I~1 and for q, q ' > 0 ,  

(q~'x ~ B ~ and q'~y ~ B~)--~ ( - - q ~ ( x  + ~ y ) E  B ~'. \ q + q ' /  

H~ is also closed under �9 q~, q E Q. For any element x in [I~ let 

I Ix U = (sup{q: q ex E B'r  1 

Clearly 

Also 

I lxl l_->o 

II'Cx II = Iq IIIx II. 

[[ x + '~y ]l ~ ]] x [] + ]] y []. 

To prove this, let ~ > 0 and let q, q' be such that 

u q  <--II x I[ + ~, C x  ~ B ~ 

1/q '<= ]] Y [[ + ~, q'~Y E B ~. 

As before, we can infer that ((qq')/(q + q'))~(x +~y)~  B ~, so that 

II x + ~y I1 <= (q + q')/(qq') <= ]l x ]] + ]] y IJ + 2E. 

As e is arbitrary, the result follows. 

Let N~ = {x:x  E II~ and [[ x ]]-- 0}; II~,/N~ is a Q-vector-space; the mapping: 

x---*[]x [[ is a Q-norm on 1]~/N~ i.e. satisfies 

V x V y ( l l  x + y II-< II x II + II y II) 

Vx( l l  qx II = Iq IIIx II) 

Vx( l l  x II = o,--, x = o). 

We let [~] be H.~/N~. 
The same procedure can be carried through for substructures of Ep and the 

following is clear. 
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LEMMA 8. Assume gp is elementarily equivalent to 9~(E). Let ~p' be a 

substructure of ~), then [g)'] is isometric to a subspace of [~]. 

(This means that there exists a Q-linear, Q-norm preserving injection from 

[~'] into [~)]). 

When �9 is the ultrapower of ~[(E) in the classical sense, the above construc- 

tion coincides with the ultrapower construction for Banach spaces. 

LEMMA 9. [ ~ ( E ) ' / ~ ] = E ' / ~ J .  

PROOF. We let ~ stand for ?l(E)~/~ and we define a mapping 

~b:H~-->E~/all; if x is the element (x~)~ of II~ we let 

q , (x )  = (x , ) ,~ , .  

This definition makes sense because for some q > 0: 

q*x E B "~ i.e. 

{ i: q~(e~x~ E B '~(E)} E 0// i.e. 

{i:llx, ll<-_ l / q } ~  ~ .  

Clearly, ~b is linear and onto. ~b is norm preserving because 

sup{q: q~x @ B ~} = sup{q: {i: 11 qx, 11--< 1} E 0//} 

( im = s u p  q:qi IIx, l l ~ l  = l x ,  . 

Finally, the kernel of ~b is N~ so that ~ induces an isometry from II~/N.~ onto 

E I / ~ .  
We now quote a result from model theory which is part of a deep theorem ot 

Keisler (cf. [1]). 

THEOREM 5. (Keisler.) Assume the continuum hypothesis; let 97l be a giver 

structure of cardinality <-)r there exists an ultrafilter ~ on N such that an) 
structure ~ elementarily equivalent to ~ and of cardinality <-_ )r is isomorphic to c 

substructure of 9A N / ~ 

To prove Theorem 4, we let E be a given Banach space of density characteJ 

=< 1~ and we apply the above theorem with 9.1 = ~I(E). Clearly, [~I(E)N/o//] ha~, 

cardinality _-< 1~ and therefore density character _-< N~. We claim [91(E)N/0//] i, 

an envelope of E. 

[9~(E)~/~//] is E~'/6U and therefore it is finitely representable in E. 
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Let F be a Banach space finitely representable in E and of density character 

=<N,; we may assume F is a subspace of some ultrapower E J~�9 ?t(E)~/�9 is 

elementarily equivalent to ?I(E); therefore, by the Lowenheim-Skolem 

theorem, there exists a substructure ,~ of ~(E)J / �9  such that 

,~ is elementarily equivalent to Pl(E) 

F 

the cardinality of ,~ is at most l~z. 

(Notice that the cardinality of F is at most N~ so that if t~ is the canonical 

mapping from l-I~.E~J/c onto E j / � 9  there exists a set X of cardinality <= N~ such 

that r  ~_ F.) 
By Keisler's theorem Y) is isomorphic to a substructure of Pl(E)N/~ therefore 

[,r is isometric to a subspace of EN/~ so that F is isometric to a subspace of 

E N l O-II. Q.E.D. 
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