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THE PROBLEM OF ENVELOPES
FOR BANACH SPACES

BY
JACQUES STERN

ABSTRACT

Let X be a Banach space. A Banach space Y is an envelope of X if (1) Y is
finitely representable in X; (2) any Banach space Z finitely representable in X
and of density character not exceeding that of Y is isometric to a subspace of Y.
Lindenstrauss and Pelczynski have asked whether any separable Banach space
has a separable envelope. We give a negative answer to this question by showing
the existence of a Banach space isomorphic to [, which has no separable
envelope. A weaker positive result holds: any separable Banach space has an
envelope of density character =N, (assuming the continuum hypothesis).

The aim of this paper is to prove the following result (relevant definitions
appear below):

THEOREM 1.  For any ¢ >0, there exists a Banach space 1+ e-isomorphic to I,
and which has no separable envelope.

This theorem gives a negative answer to a question of Lindenstrauss and
Pelczynski ([3, problem 8]). There is still a result in the positive direction:

THEOREM 2.  Assume the continuum hypothesis; then any Banach space of
density character at most R, has an envelope of density character at most N,.

We first recall some definitions.

DeriNiTioN 1. Let E, F be Banach spaces. F is finitely representable in E if
for any finite dimensional subspace A of F and any ¢ > 0, there is a subspace B
of E which is 1+ e-isomorphic to A.

DerFINITION 2. Let E be a Banach space; the density character of E is the
smallest cardinal « such that there exists a dense subset of E of cardinality .
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DeriniTiON 3. Let E, F be Banach spaces; F is an envelope of E if:

i) F is finitely representable in E,

ii) any Banach space finitely representable in E and whose density character
does not exceed that of F is isometric to a subspace of F.

In [3], Lindenstrauss and Pelczynski have shown that L, (0, 1) is an envelope of
i, and have asked whether a separable Banach space has a separable envelope.

The notion of ultrapower [2] provides a nice approach to study finite
representability: the following result was already observed in [4] (see also [5]),
and will be used throughout the paper:

ProposiTiON 1. Fis finitely representable in E if and only if F is isometric to a
subspace of some ultrapower of E.

1. A separable Banach space with no separable envelope

Before we start building the counter example we state two more results that
can be proved by the same method. These results may give an indication on the
ideas that have led us.

THEOREM 3. Forany & >0, there exists a Banach space E, 1+ e-isomorphic to
l,, such that if U is an ultrafilter on a set ©, i and — i are the only isometric
embedding from E into E®/U (where i denotes the canonical embedding).

To state the other result, we need one more definition.

DEerFNITION 4. Let (x.).en be a sequence of elements of a given Banach
space E.

i) (x.)nen is norm-indiscernible if for any finite set of real numbers A,, - - -, A«
and for any increasing sequence of integers n, < - - - < n, the following equality
holds: JJAux i+ -+« + Axe || = Aixa, - - + Ak |-

ii) (x.)nen is norm-indiscernible and symmetric if the above equality holds for
any finite set of integers (not necessarily increasing).

D. Dacunha Castelle and J. L. Krivine have shown that in any L,-space
(1= p <) any norm-indiscernible sequence is symmetric.

THEOREM 4. For any e >0 there exists a Banach space E, 1+ ¢-isomorphic to
L., and a sequence (X, ).en in E which is norm-indiscernible but not symmetric.

We first give the proof of Theorem 1. We start with the Hilbert space I,. ; is
endowed with the usual inner product
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o

(X,9)= 2 XuYn-

n=0

The euclidean norm is defined by

|x]=V(xx).

The unit ball of I, will be denoted by B and the unit sphere by S. We will use
quite freely the terminology coming from elementary geometry. Thus, a line will
be any one-dimensional subspace of [;; a plane any two-dimensional subspace;
L (x) will denote the line spanned by a non zero element x, P(u, v) the plane
spanned by two independent elements u, v. The angle a of two elements x, y is
defined by cosa = (x,y)/|x ||y |,0=a = m. If e is an element of norm 1 and if y
is a real number, 0 <y <1, the facet F(e, y) is the set of elements y in B such
that (¢,y)=1-+. Finally if x and x' are two elements of a given space, we
denote by [x,x’] the set {y:y =Ax +(1-A)x,0=A =1}.

We pick a sequence 8o, 8,, -, 8., - - - of positive real numbers such that

8, > 8nis neN

lim,~. 8, =86 >0

8o 1s small enough; a precise version of this statement is (1 - 8,)' =1+ ¢ and

((V2/2)+4V 8) (1 - 80) * = cos (g_%o)'

We let ey, e, -, e, -+ denote the unit vector basis of /,.

We let (q:).en be an enumeration (without repetition) of the set of rational
numbers. We let H be the set of pairs (i, j) such that i <j and ¢, <g,
We let

e +te
d, =5—%5.
V2

We let K be the set of elements x of I, such that
1) xeB
2) —1+8,=(x,e.)=1-8, neEN
3) —1+86=(x,¢;)=1-86 (i,j)EH
4 -1+486=(x,d;)=1-6 (i,j)EH.
Clearly (1 - 6,)B C K C B; also K is an intersection of convex sets, therefore K

is convex; finally — K = K i.e. K is symmetric. Therefore K is the unit ball of a
new norm defined by

x| =(sup{A: Ax €K},
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The new norm is equivalent to the other one; more precisely we have
[x|=llx|=(1~8)"[x].

We claim the space E equal to [, endowed with the new norm |/ x | has no
separable envelope and is 1+ ¢-isomorphic to L.

We first make some remarks.

1. The unit sphere % of E is the union of the facets F(e, 6;), F(— e, 8:), i €N,
of the facets F(cy,8), F(—c;, 8), F(dy,8), F(—d;,8), (i,j)€ H and of the
elements x of S such that the line L(x) does not meet any of those facets.

2. If Pis aplane and F is a facet F = F(e, v), then either P N F is empty or
there exist two elements of S, x and x' such that P N F is the set of elements
[x, x']; it is easy to see that in this case | x — x’| £ 2V2y — y* (this is the euclidean
diameter of F).

LemMa 1. A plane P meets at most 8 of the facets of 2.

Let F and F' be two distinct facets of 2, F = F(u,y), F'= F(u', ¥'). Assume
x€F, yEF. We have (x,y)— (u,u’)=((x,y)—(x,u’ )+ ({(x,u’)—(u,u’")) so
that (x,y)=(u,u’)+|y —u'|+|x —u| but it is easy to see that

ly—u'|=V2y<2V8, similarly |x—u|<2V8,

so that (x,y)<(u,u')+ 4V/'5,.
But (i, u’) is at most V2/2 so that

(x,y)<¥+2\/5_0.

If we let (x,y)/|x|:|y|=cosa, 0=a =, then « is not much smaller than
7 /4; more precisely
T
*=47 100

Now assume P is a plane which contains nine elements belonging to nine
distinct facets of 3; two of these elements are such that their angle is at most
27 /9; we get (m/4)— (m/100) = 27 /9; contradiction.

In order to describe the intersection of % with a plane, we introduce some

v

notation: assume u, v are elements of P such that |u|=|v|=1, (u,0)=0;
assume ao, ap, a1, @), - °, a7, 4 are real numbers such that
1) [+ 7 el 0

i) e = ax k=0,---,7



Vol. 24, 1976 ENVELOPES OF BANACH SPACES 5

i) (w/8)tai=an k=0,---7
iv) 0= o <27 k=0,---,7
V) 0sav<2m k=0,---,7

(by as we mean 27).
Let x, = (cos ax )u + (Sin o )v; S(U, v; @, a, * * *, @7, a7} Will denote the union of
the following sets:

X =[xk, x4] k=0,---7

Ye={y:y=(cosBlu+(sinB)v,ai=B =} k=0,---,7.

(Recall that [x, xi] ={x:x = Axe + (1= A)x,,0=A =1})

Clearly, if P is a plane, £ N P is of the form Z(u, v; ap, ay, * - -, a7, a7) for some
elements u, v and some real numbers ao, ag, - * -, @, a7, satisfying conditions i)
to v).

We now turn to ultrapowers of E. Let U be an ultrafilter on a set @. We recall
that the ultrapower E®/% is the quotient space Il,/N where II,=
{(xs)oce: Xo € E and for some A, {|x,[|= A} and N = {(x5)oco: lima || x, || = 0}.
The norm on E®/% is computed via the formula

| (%o )oza | = tim] s .

Therefore E®/ U is IS/ U endowed with a new norm equivalent ot the euclidean
norm and satisfying more precisely for x = (x;)sce

[x|=llxl=1-8)"|x].

This shows that it makes sense to speak of orthogonal vectors, length, angle - - -
in E®/U.

If (Co)oco are subsets of E then Il,c0Cy /U is the set of elements x which can
be written (x,)see With x, € G,

LeEmMMA 2. Let Pbe a plane in 13/ ; the intersection of P with the unit sphere of
E®[U is of the form 3(u, v; o, af, -+, as, a}).

Observe first that P is the ultraproduct of [1,co Po /¥ for a family of planes P,
P, C L. If x is an element of P such that ||x | =1 then we may replace x, by
Xq /|| x4 || or by a fixed element of norm 1 if x, = 0 so that if 3, is the unit sphere
of P, then 35 = [lyee2 N Py / U. Py N2 is 3(Uy, Vs aso, A in, * * * a7, @ 7). FOT any
element x = (x,)sce such that

Xo = Aollg + oV,
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we have
X = (liorun /\e) u+ (liqun u9> v

where u = (us )oee, L= (Us )ee@-
It follows easily that

2}’ = E(u,v;au,a&, RN 2 a;)

where
— r— 1 ’
Y =limag, ai=limap.
AU X

Furthermore if

Xox = (COS ot Yo + (SIN @r YVo
and
X e = (COS @ ) Us + (SIN & 1) s

as above, then
Xk = (xgk )96(-) = (COS ak)u + (Sin o )U
xi= (X t)oco = (COS a)u + (sin a i)v

and

(*)

| = xi| = Him | xoe = x|

Before we state the next lemma, we recall that there is a canonical embedding
from E into E®/ (which maps x onto the element i(x) of E®/% given by the
constant function equal to x). We still write e, ei,- ", e, - instead o
i(eo),i(er), - i(e.). We let é, =e,(1—38,); similarly, we let, for (i,j)€E H
& = c;(1-8), d; = d;(1- 8).

We also recall that if x is an element of the facet F(e,, 3,) of E, ther
|x — & |=V28, - 62; we let v, = V28, — 8% v, is a strictly decreasing sequ
ence; finally, we observe that for any n, there exists x., X in F(ea, 8,) such tha
[X X2) C Fen, 82), | Xa — X 0| =27a, and (x, + x7)/2 = é..

Lemma 3. Letx and x' be two elements of 1S/ U such that [x, x'] is included i
the unit sphere of E®/U and |x —x'|=2y.; then, there exists an integer m
0=m = n, such that
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sup (|x =& || x" = &n )= ym;
or
sup(|x +én |,/ x"+ m )= Y.

Let P be the plane spanned by x and x’; if we keep the notations of the proof
of the preceding lemma, the hypotheses mean that

[x,x']C3p; |x—x'|Z2y..

The inclusion [x,x']C 2, shows that for some integer k, [x, x'] C [xs, xi],
0=k =7. Now equality (*) tells us that

2’)’" = ‘xk ‘x"“:liq[ln,.X(;k ‘x:yk,
so that X ={6:|xa — x| > 2700} E U
Now if 8 € X, [xa, X a] can only be included in one of the facets F(* e, ox),

0= m = n (otherwise, we would have | xp« — X 6| =27..1). It follows that there
exists an integer m,0 = m = n, such that

{0: [xo0, x o] C F(em, 8 )} € U,
or
{OZ[XQk,x;k]gF(_em’ 6"‘)}6 02[

We only deal with the first case; we get:
{6:|x0k —En | =Y }EU
{6:|xti—én|=ym}EU.
In the ultrapower this gives
[ Xk = b | = Y
[Xk= b | = Yo
But for some A, 0 <A <1, x = Axi + (1 — A)xy; therefore
|x = &n | =[x = &)+ (1= A)xi= &n)| = ym,

similarly |x' = é, | = Y.

We now study isometric embeddings from E into E®/ ; this means that we
try to forget the euclidean structure; the next lemma shows that we are actually
able to recapture it.

LEMMA 4. Let ¢ be an isometry from E into E® | U, then, ¢ is an isometry from
L into 15/ %U.
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Proor. Let P be a plane in I$/%. The unit sphere of P (for the norm of
E®/U) is Zp =3(u,v; a0, g, - *, a5, ay). Clearly, from the fact that aw. =
o + (7 /8), it follows that 2, has infinitely many elements x such that
| x | =lima | xs | = 1. We claim that the restriction to P of the norm of [/ % is the
unique inner-product norm on P whose unit sphere has at least 21 elements in
common with 2. Indeed, the unit sphere of any other inner product norm is an
ellipse and therefore can have at most 20 points in common with %, (at most 4
with the circle and two with any facet).

Now if | ¢(x)| # | x |, then if Q is any plane in E such that x € Q, two distinct
inner-product norms can be defined on P = ¢(Q):

Ni(y):y—=ly|=Ni(y)

Noy):y—[o7'(y)| = Na(y).

Let S; and S, be the unit spheres of N;, N, respectively. Clearly, S, has infinitely
many points in common with 2. ¢7'(S,) has infinitely many points in common
with the unit sphere of Q (for the norm of E), therefore as ¢ is an isometry, S,
has infinitely many points in common with 3,; contradiction.

LEMMA 5. Let ¢ be an isometry from E into E®/ % ; then for every integer n,

d(e.)= *e,.

Proor. Assume the lemma is false and let n be the first integer such that
é(e.)# *e. Let x, and x, be such that

[ X2] C F(en 8.)C 3

+xi .
P Xo —x0] = 279a; %—Een.

The set [ (x,), #(x.)] is included in the unit sphere of 2. By Lemma 4,
| (%) = (x2)| =27

We now may apply Lemma 3; it follows that for some m, 0= m = n,
either

|6 ()= En|=ym and [G(x2) = &n|= ym
or

|¢(xa)tén|=ym and [d(x3)+ En|= Y.
If m <n, then by our choice of n we get

¢(én)= *én
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so that either

[d(xa) = @ (én)| = Yom

or

| & (xn)+ & (8n)| = Ym;
this gives

Xn = b | = Y
or

Xn + b | Z Y,
hence

b=l |ZEYmtyn 1. = Cn | =Yt Yt St

or

len+em |EYm+ v, i€ |entem|=Ym+v.+86.+8,.

But 8, + 8, + Ym + 1. =6V 8 =1 and |e. * e, | = V2; contradiction.
So, for example,

l¢(x")_é"]§Yn

and also

[d(x)— & | = Yn.

The following equality is well known and holds in any Hilbert space:

| (x)+ d(x) =28 '+ d(xa) = S (x)[ =2(| (x.) — & [+ [ b(x2) = & [)

if
| ¢ (xa) = d(x2)|=27a
| (xn) = 60| = yn
| (x0)= €. | = va.
It implies

o)+ d(x)—26,]|=0

so that
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- X, +x, -
o6 =2latrd g

which implies,
d(en) = en;

in the other case, a similar argument yields ¢(e.) = —e..
We are now going to define many distinct spaces finitely representable in E;
we first state an easy lemma.

LemMma 6. Let i <j. Then either (i,j)€ H and |c;||=|d,|=(1—-8)" or
(i,j)€ H and | c; || = |d; [l = 1.

LEmMMA 7. For any £ € R — Q there exists an ultrafilter U, on N, and an
element a; of EN | U, such that

la; tel=V2(1-8)" if q<¢

la; +el=V2 if ¢>¢.

Proor. Let U, be an ultrafilter on N such that
hmr? q =¢.

In the space E™ /U, we let a, be the element given by (e, ).e~. Let i be a fixed
integer and assume ¢ < £ then {j: q: <g¢; and i <j} € %, so that by Lemma 6,
lac + e || = lima, (I + e | )ien = lima, (V2] ¢, [)en = V2(1 - 8) .

Similarly, | a; — e || = V2(1 — 8)". On the other hand if j is a fixed integer and
g, > ¢ then {i:q<q and i>j}E€ U, so that by Lemma 6: [a,+e¢|=
lima, (e + ¢ [ )ien = lima, (V2] ¢, [|)ien = V2; similarly [ a, — ¢ || = V2.

We are now able to prove Theorem 1:

CLamm. E is 1+ g-isomorphic to I, and has no separable envelope.
Proor oF CramM. We have for any x in E
|x|=llxll=(1~80)" x|,

so that E is (1 — 8)"' isomorphic to l; if (1 = 8,) ' =1+ ¢, E is 1 + g-isomorphic
to L.

Assume E has a separable envelope F. F is a subspace of an ultrapower of E,
E®J/A. Let (U¢)ier-o be ultrafilters on N, a; be distinguished elements in
E"™ /%, respectively, as in Lemma 7. Let E, be the subspace of E™ /U, spanned
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by a, and the elements of E. Let ¢, be an isometric embedding from E; into F.
¢: | E is an isometric embedding from E into E®/ % ; therefore, by Lemma 5,

de(e) = e

Let b, be ¢¢(a;); by Lemma 7 and the above we get
b e || =V2(1-8)" if g <§&.

IIbg-ief|l=\@ if g>¢.

If ¢£7# ¢ there exists an integer k such that £ < g < ¢£’; we get
b £ e ]| = V2

[ be e || = V2(1 - 8)"

so that

Ibe = bell =2 V2((1 - 8) '~ 1) = p.

Finally the (b;):cx-¢ are an uncountable family of elements with mutual
distance = p > 0. This cannot happen in a separable Banach space.

We now briefly indicate how to modify the above construction in order to
prove Theorems 3 and 4.

ProoF oF THEOREM 3. We let (8,).en and 8 as above; we also keep the
other notations.

We let K, be the set of elements x in I, such that:

i) x € B (B is the unit ball of 1,)

i) -1+8,=(x,e.)=1-8,, nEN

i) —1+86=(x,¢c;)=1-86,j=i+1; i,jEN.

K, is the unit ball of E;; E; is 1+ e-isomorphic to I, provided 8, is small
enough. If ¢ is an isometry from E,; into E$/%, then, it is shown as above that
b(e)= e,

Now
e +enl/V2=(01-8)"

whereas

le.—en)/V2=1
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so that for any i, ¢(e)=e implies ¢(e)= €., and ¢(e)= —e implies
d(eir1) = — ¢(ei1). It follows that either ¢(e,)= e, and ¢ is the canonical em-
bedding i from E, into ES/U or ¢(e)= —e, and ¢ is equal to —i. Q.E.D.

Proor oF THEOREM 4. We keep the same notations as above. We let K, be
the set of elements x in [, such that

i) x€B

i) —1+8=(x,Qe; +¢)V5)=1-8, i<]j.

K is the unit ball of a Banach space E.; E,is 1 + ¢-isomorphic to I, provided & is
small enough.

Assume k,,-- -, k,, -+ - is an increasing subsequence of the integers; let o be
the isometry from I, into I, defined by o (e.) = e,. It is easy to see that o is an
isometry from E, into E, so that (e,).e~ is a norm-indiscernible sequence. It is
not symmetric because

VS =|le +2e| # | ex+2e. ]| = (1-8)V5.

2. Envelopes of density N,

We now prove Theorem 2. Actually, this result can be derived from a result in
model-theory; thus what we have to do is to describe a proper setting to transfer
this result. We assume the reader is familiar with model theory and we refer to
[1] for all the definitions and the results we need.

We are interested in the following type of structures:

A= ('%Il» +w’('q\}()q€0’Bw)

where

|| is a set (the domain of )

+ % is a function from |A* to | A |

-q" is a function from |A| to |A| for any g € Q

BY is a subset of ||

The appropriate language L to discuss such structures includes, besides
variables (v;)ien:

a binary function symbol +

for each g in Q a unary function symbol g

a unary predicate symbol B.

To any Banach space E, we can associate a structure of the above type A(E),
the interpretation of B being the unit ball of E. Conversely, if § is a structure
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elementarily equivalent to A(E) it is possible to associate to § a normed-Q-
space [D] by the following procedure:
first let
[Mo={x:x € |9| and for some q >0, g°x € B%}.

I1g, is closed under + ® because © is elementarily equivalent to %(E); this shows
that for any two elements x,y in |$| and for g, ¢' >0,

(q°x € B® and ¢°y € B®)— (f%)b(x +®y)e B®.
I is also closed under - q®, g € Q. For any element x in I, let
x| = (sup{q:q°x € B*})".
Clearly
lxlz0
I-q®°x=1qllx].
Also
e +2yl=lxli+]yll
To prove this, let € >0 and let ¢, q’ be such that
1/qg =||x|+e q°x € B®
/g'=|lyll+e q°y € B.
As before, we can infer that ((qq")/(q + q"))°(x +®y) € B®, so that
lx+®yl=(q+q)/(qa)=lx]+]yl+2e.

As ¢ is arbitrary, the result follows.
Let No={x:x €Iy and | x || = 0}; [/ N, is a Q-vector-space; the mapping:
x —| x| is a Q-norm on Ils/ Ny i.e. satisfies

VaVy(lx +yl<lx|+lyl)
Ve(lgxli=lqllx])
V(x| =0ex =0).

We let [D] be 15/ Ne.
The same procedure can be carried through for substructures of  and the
following is clear.
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LemMa 8. Assume 9 is elementarily equivalent to U(E). Let ' be a
substructure of 9, then [9'] is isometric to a subspace of [9].

(This means that there exists a Q-linear, Q-norm preserving injection from
[&] into [B]).

When £ is the ultrapower of Y(E) in the classical sense, the above construc-
tion coincides with the ultrapower construction for Banach spaces.

LemMma 9. [W(E) /U])=E"/.

Proor. We let § stand for A(E) /% and we define a mapping
Y:Mg— E"/; if x is the element (x;).c; of Tl we let

Y (x) = (Xi)ier.

This definition makes sense because for some g > 0:
q°x € B® ie.
{i:q"®x, € B™}e U ie.
{izlxl=1/q}e .

Clearly, ¢ is linear and onto. ¢ is norm preserving because
sup{q: q®°x € B} =sup{q:{i:| qx | =1} € U}

=sup{q:qlioum||x,- ||§1}= (liqunllx,» ||>

Finally, the kernel of ¢ is N so that ¢ induces an isometry from I,/ N, onto
E'/u.

We now quote a result from model theory which is part of a deep theorem of
Keisler (cf. [1]).

THEOREM 5. (Keisler.) Assume the continuum hypothesis; let Y be a giver
structure of cardinality = N,; there exists an ultrafilter U on N such that an)
structure § elementarily equivalent to A and of cardinality = R, is isomorphic to ¢
substructure of AN/ U.

To prove Theorem 4, we let E be a given Banach space of density charactel
=N, and we apply the above theorem with % = A(E). Clearly, [%(E)" /%] has
cardinality =N, and therefore density character =N,. We claim [W(E)" /4] is
an envelope of E.

[AE)Y /U] is EY/U and therefore it is finitely representable in E.
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Let F be a Banach space finitely representable in E and of density character
= N,; we may assume F is a subspace of some ultrapower E’/O. A(E)' /D is
elementarily equivalent to 9(E); therefore, by the Lowenheim-Skolem
theorem, there exists a substructure § of A(E) /£ such that

$ is elementarily equivalent to U(E)

(9] F

the cardinality of © is at most N,.

(Notice that the cardinality of F is at most N, so that if ¢ is the canonical
mapping from [Tuey,c onto E’ /O there exists a set X of cardinality =N, such
that ¥(X)D F.)

By Keisler’s theorem § is isomorphic to a substructure of A(E)" / U, therefore
[9] is isometric to a subspace of E™ /% so that F is isometric to a subspace of
E™/u. Q.E.D.
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